Introduzione a la Metafisica del Numero
René Guénon
Benché il presente studio sembri, almeno a prima vista, avere
un carattere alquanto "speciale", ci è parso utile intraprenderlo per precisare
e spiegare più completamente certe nozioni da noi richiamate nelle diverse
occasioni in cui ci siamo serviti del simbolismo matematico, e questa ragione
basterebbe a giustificarlo senza insistere oltre. Tuttavia, dobbiamo dire che vi
si aggiungono altre ragioni secondarie, che concernono soprattutto quel che si
potrebbe chiamare l'aspetto "storico" della questione; questo, in effetti, non è
interamente privo di interesse per il nostro punto di vista, nel senso che tutte
le discussioni che sono state sollevate sulla natura e sul valore del calcolo
infinitesimale offrono un sorprendente esempio di quella assenza di principi che
caratterizza le scienze profane, cioè le sole scienze che i moderni conoscono e
anzi concepiscono come possibili. Abbiamo spesso fatto rilevare che la maggior
parte di queste scienze, anche nella misura in cui ancora corrispondono a
qualche realtà, non rappresentano nulla di più di semplici residui naturali di
alcune delle antiche scienze tradizionali: è la parte più inferiore di quelle
che, avendo cessato d'esser posta in relazione coi principi, e avendo perduto
per ciò il suo vero significato originale, ha finito per assumere uno sviluppo
indipendente e per essere ritenuta come una conoscenza sufficiente a se stessa,
benché, in verità, il suo valore peculiare come conoscenza si trovi precisamente
ridotto con ciò stesso quasi a nulla. La qual cosa è soprattutto evidente quando
si tratta delle scienze fisiche, ma, come abbiamo già spiegato altrove (1), la
stessa matematica moderna non fornisce sotto questo aspetto una eccezione, se la
si confronta a quel che erano per gli antichi la scienza dei numeri e la
geometria; e, quando qui parliamo degli antichi, bisogna comprendervi anche
l'antichità "classica", come il minimo studio delle teorie pitagoriche e
platoniche basta a dimostrare, o almeno lo dovrebbe se non si dovesse tener
conto della straordinaria incomprensione di coloro che oggi pretendono di
interpretarle; se questa incomprensione non fosse così completa, come si
potrebbe sostenere, per esempio, l'opinione di una origine "empirica" delle
scienze in questione, quando, in realtà, appaiono al contrario tanto più lontane
da ogni empirismo quanto più si risalga lontano nel tempo, così come accade
d'altronde per ogni altra branca della conoscenza scientifica?
I matematici, nell'epoca moderna, e più particolarmente
ancora nell'epoca contemporanea, sembrano essere arrivati ad ignorare quel che è
il numero veramente; e noi non intendiamo parlare sol tanto del numero preso in
senso analogico e simbolico come lo intendevano i Pitagorici e i Kabbalisti,
cosa che è troppo evidente, ma anche, cosa che può sembrare più strana e quasi
paradossale, del numero nella sua accezione semplicemente e propriamente
quantitativa. In effetti essi riducono ogni loro scienza al calcolo, secondo la
più ristretta concezione che se ne possa avere, cioè considerato come un
semplice insieme di procedimenti più o meno artificiali e che non valgono
insomma che per le applicazioni pratiche alle quali danno luogo; in fondo, ciò
significa dire che essi sostituiscono il numero con la cifra, e, del resto,
questa confusione del numero con la cifra è così estesa oggi che si potrebbe
facilmente ritrovarla ad ogni piè sospinto persino nelle espressioni del
linguaggio corrente (2). Ora la cifra non è, in tutto rigore, niente di più che
il vestito del numero; non diciamo anche il suo corpo, perché è piuttosto la
forma geometrica che, sotto certi aspetti, può essere legittimamente considerata
come costituente il vero corpo del numero, come dimostrano anche le teorie degli
antichi sui poligoni e sui poliedri, messi in rapporto diretto con il simbolismo
dei numeri; e ciò si accorda d'altronde con il fatto che ogni "incorporazione"
implica necessariamente una "spazializzazione". Noi non vogliamo, tuttavia, che
le cifre stesse possano dirsi segni interamente arbitrari, la cui forma non
sarebbe stata determinata che dalla fantasia di uno o più individui; deve valere
per i caratteri numerici ciò che vale per i caratteri alfabetici, dai quali
d'altra parte i primi non si distinguono affatto in certe lingue (3), e si può
applicare agli uni come agli altri la nozione di una origine geroglifica, cioè
ideografica o simbolica, che vale per tutte le scritture senza eccezioni, per
quanto dissimulata questa origine possa essere in certi casi dalle deformazioni
o dalle alterazioni più o meno recenti.
Ciò che c'è di certo, è che i matematici impiegano nella loro
notazione dei simboli di cui non conoscono più il senso, e che sono come delle
vestigia di dimenticate tradizioni; e quel che è più grave, è che non solamente
essi non si domandano quale possa essere questo senso, ma anche sembra che non
vogliano che ve ne sia uno. In effetti, essi tendono sempre di più a considerare
ogni notazione come una semplice "convenzione", con il che intendono qualche
cosa che è data in maniera del tutto arbitraria, ciò che, in fondo, è una vera
impossibilità, perché non si fa mai una qualsiasi convenzione senza aver qualche
ragione di farla, e di fare precisamente quella piuttosto che ogni altra
possibile; è soltanto a coloro che ignorano questa ragione che la convenzione
può apparire arbitraria, come non è che a coloro che ignorano le cause di un
avvenimento che questo può sembrare "fortuito"; è ciò che accade in questo caso,
e vi si può vedere una delle conseguenze più estreme dell'assenza di ogni
principio, che arriva fino a far perdere alla scienza, o alla sedicente tale,
poiché allora essa non merita più veramente questo nome sotto nessun riguardo,
ogni significato plausibile. D'altra parte, per il fatto stesso della concezione
attuale di una scienza esclusivamente quantitativa, questo "convenzionalismo" si
estende poco a poco dalla matematica alle scienze fisiche nelle loro teorie più
recenti, che così si allontanano sempre più dalla realtà che pretendono di
spiegare; abbiamo insistito su ciò sufficientemente in un'altra opera e ci
dispensiamo dal parlarne ancora, tanto più che è della sola matematica che ora
ci dobbiamo occupare più particolarmente. Sotto questo punto di vista,
aggiungeremo soltanto che, quando si perde così completamente di vista il senso
di una notazione, è poi facilissimo passare dall'uso legittimo e valido di
quella ad un uso illegittimo, che non corrisponde più effettivamente a nulla, e
che può anche essere talvolta del tutto illogico; ciò può sembrare abbastanza
straordinario quando si tratta di una scienza come la matematica, che dovrebbe
avere con la logica legami particolarmente stretti, e tuttavia è talmente vero
che si può rilevare una molteplicità di illogismi nelle notazioni matematiche
come sono comunque concepite nella nostra epoca.
Uno degli esempi più notevoli di queste notazioni illogiche,
proprio quello che dovremo esaminare qui prima di tutto, benché non sia il solo
che incontreremo nel corso della nostra esposizione, è quello del preteso
infinito matematico o quantitativo, che è la fonte di quasi tutte le difficoltà
che sono state sollevate verso il calcolo infinitesimale, o, forse più
esattamente, contro il metodo infinitesimale, poiché qui c'è qualcosa che
oltrepassa la portata di un semplice "calcolo" nel senso ordinario di questa
parola, checché ne possano pensare i "convenzionalisti"; non vi sono eccezioni
da fare che per quelle di queste difficoltà che provengono da una concezione
erronea o insufficiente della nozione di "limite", indispensabile per
giustificare il rigore di questo metodo infinitesimale e per farne un'altra cosa
che un semplice metodo di approssimazione. C'è d'altra parte, come vedremo, una
distinzione da fare tra i casi in cui il cosiddetto infinito non esprime che una
pura e semplice astrusità, cioè una idea contraddittoria in se stessa, come
quella del "numero infinito", e quei casi in cui esso è semplicemente impiegato
in maniera abusiva nel senso di indefinito; ma non bisognerebbe credere per
questo che la stessa confusione dell'infinito e dell'indefinito si riduca ad una
semplice questione di parole, poiché veramente essa si basa sulle idee stesse
Quel che è singolare, è che questa confusione, che sarebbe stato sufficiente
dissipare per eliminare tante discussioni, sia stata commessa da Leibnitz
stesso, che è generalmente ritenuto come l'inventore del calcolo infinitesimale,
e che chiameremmo piuttosto il suo "formulatore", poiché questo metodo
corrisponde a certe realtà, che, come tali, hanno una esistenza indipendente da
colui che le concepisce e che le esprime più o meno perfettamente; le realtà
dell'ordine matematico non possono, come tutte le altre, che essere scoperte e
non inventate, mentre, al contrario, è di "invenzione" che si tratta allorché,
come pure accade troppo spesso in questo dominio, ci si lascia trascinare,
effettivamente da un "gioco di notazione", nella pura fantasia; ma sarebbe
sicuramente ben difficile far comprendere questa differenza a dei matematici che
si immaginano volentieri che tutta la loro scienza non è e non deve essere
niente altro che una "costruzione dello spirito umano", cosa che, se bisognasse
credere a loro, la ridurrebbe certo a non essere in verità che ben poca cosa!
Comunque, Leibnitz non seppe mai spiegarsi chiaramente sui principi del suo
calcolo, e ciò ben dimostra che qui vi era qualcosa che lo oltrepassava e che
gli si imponeva in una qualche maniera senza che egli ne avesse coscienza; se se
ne fosse reso conto, non si sarebbe sicuramente impegnato in una disputa di
"priorità" con Newton, e d'altra parte tali dispute sono sempre perfettamente
vane, poiché le idee, in quanto sono vere, non potrebbero essere proprietà di
qualcuno, nonostante l'"individualismo moderno", e non v'è che l'errore che
possa essere propriamente attribuito agli individui umani. In seguito non ci
dilungheremo su questa questione, che ci potrebbe trascinare molto lontano
dall'oggetto del nostro studio, benché può darsi che non sia inutile, sotto
certi punti di vista, far comprendere che il ruolo di coloro che si chiamano
"grandi uomini" è spesso, per una buona parte, un ruolo di "recettori", sebbene
essi siano generalmente i primi a illudersi della loro "originalità".
Ciò che ci concerne più direttamente per il momento, è
questo: se dobbiamo constatare tali insufficienze in Leibnitz, e delle
insufficienze tanto più gravi in quanto esse vertono soprattutto sui problemi
dei principi, che ne potrà essere degli altri filosofi e matematici moderni, ai
quali egli è malgrado tutto sicuramente molto superiore? Questa superiorità,
egli la deve, da una parte, allo studio che aveva fatto delle dottrine
scolastiche del medioevo, benché egli non le abbia sempre interamente comprese,
e, d'altra parte, a certi dati esoterici, di origine o di ispirazione
principalmente Rosicruciana (4), dati evidentemente molto incompleti e anche
frammentari, e che d'altra parte gli accadde talvolta di applicare assai male,
come ne vedremo qualche esempio proprio qui; è a queste due "fonti", per parlare
come gli storici, che conviene riferire, in definitiva, quasi tutto ciò che c'è
di realmente valido nelle sue teorie, e è ciò che anche gli permise di reagire,
benché imperfettamente, contro il cartesianismo, che rappresentava allora, nel
doppio dominio filosofico e scientifico, tutto l'insieme delle tendenze e delle
concezioni più specificatamente moderne. Questa nota è sufficiente insomma a
spiegare, con qualche parola, tutto quel che fu Leibnitz, e, se si vuol
comprenderlo, non bisognerebbe mai perdere di vista queste indicazioni generali,
che noi abbiamo creduto sia stato, per questa ragione, bene formulare
all'inizio; ma è tempo di lasciare queste considerazioni preliminari per entrare
nell'esame delle questioni stesse che ci permetteranno di determinare il vero
significato del calcolo infinitesimale.
Note
1. Vedere Il Regno della Quantità e i Segni dei Tempi.
2. La stessa cosa accade ai "pseudo-esoteristi" i quali sanno
così poco di ciò di cui vogliono parlare che non mancano mai di commettere
questa stessa confusione nelle elucubrazioni fantasiose che essi hanno la
pretesa di sostituire alla scienza tradizionale dei numeri!
3. L'ebraico e il greco ricadono in questo caso, ed anche
l'arabo prima dell'introduzione dell'uso delle cifre indiane, le quali, in
seguito, più o meno modificandosi durante il Medioevo passarono in Europa; si
può notare, a tale proposito che la stessa parola cifra non è altro che la
parola araba çifr, sebbene quest'ultima sia in realtà la designazione
dello zero. è vero che in ebraico, d'altra parte, saphar significa
"contare" o "numerare" come anche "scrivere", da cui sepher,
"scrittura" o "libro" (in arabo sifr, che designa particolarmente un
libro sacro), e sephar, "numerazione" o "calcolo"; da quest'ultima parola
proviene anche la designazione dei Sephiroth della Kabbala, che
sono le "numerazioni" principali assimilate agli attributi divini.
4. Il marchio innegabile di questa origine si trova nella
figura ermetica posta da Leibnitz all'inizio del suo trattato De arte
combinatoria: è una rappresentazione della Rota Mundi, nella quale al
centro della doppia croce degli elementi (fuoco e acqua, aria e terra) e delle
qualità (caldo e freddo, secco e umido), la quinta essentia è
simboleggiata da una rosa a cinque petali (corrispondente all'etere considerato
in se stesso e quale principio degli altri quattro elementi); naturalmente,
questo "disegno" è passato completamente inosservato a tutti i commentatori
universitari.
Nessun commento:
Posta un commento